## wess 5 -00-002 <br> NAVAL POSTGRADUATE SCHOOL Monterey, California



## ON THE TRADEOFF BETWEEN DRIFT AND VARIANCE

by
A. R. Washburn

$$
\text { January } 1980
$$

oved for public release; distribution unlimited.

## NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

Rear Admiral T. F. Dedman Superintendent

Jack R. Borsting
Provost

This report was prepared by:

| REPORT DOCUMENTATION PAGE | READ INSTRUCTIONS <br> BEFORE COMPLETING FORM |
| :---: | :---: |
| 1. REPORT NUMBER NPS55-80-002 | 3. RECIPIENT'S CATALOG NUMBER |
| 4. TITLE (and Subtitio) <br> On the Tradeoff Between Drift and Variance | 5. TYPE OF REPORT \& PERIOD COVERED Technical |
|  | 6. PERFORMING ORG. REPORT NUMEER |
| 7. AUTHOR(s) <br> A. R. Washburn | 8. CONTRACT OR GRANT NUMBER(s) |
| 9. PERFORMING ORGANIZATION NAME AND ADORESS <br> Naval Postgraduate School <br> Monterey, CA 93940 | 10. PROGRAM ELEMENT, PROJECT, TASK AREA A WORK UNIT NUMEERS |
| 11. CONTROLLING OFFICE NAME ANO ADORESS <br> Naval Postgraduate School <br> Monterey, CA 93940 | 12. REPORT DATE January 1980 |
|  | 13. Number of pages 22 |
| 14. MONITORING AGENCY NAME \& ADDRESS(If difforent from Controlling Offico) | 15. SECURITY CLASS. (of this foport) Unclassified |
|  | 15. DECLASSIFICATION/DOWNGRADING SCHEDULE |

## 16. DISTRIBUTION STATEMENT (of this Roport)

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (Of the sbatract ontered in Block 20, If difforent from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse side if necessary and Identlfy by block number)

Evasion
Search
Drift
20. AESTRACT (Continue on reverse elde if noceseary and idontlfy by block number)

A particle with fixed speed $v$ that simultaneously wants to behave evasivel and drift from one point to another in two dimensions has a conflict: If it drifts the maximum distance $v t$ in a fixed time $t$, then it is forced to travel in an absolutely unevasive straight line. On the other hand, drift will not be maximal if the particle's motion is some sort of an evasive random walk. The purpose of this note is to report on an exploration of quantitative tradeoffs between these objectives.
A. R. Washburn

Naval Postgraduate School Monterey, CA 93940


## by

A. R. Washburn

## 1. INTRODUCTION

A particle with fixed speed $v$ that simultaneously wants to behave evasively and drift from one point to another in two dimensions has a conflict: If it drifts the maximum distance $v t$ in a fixed time $t$, then it is forced to travel in an absolutely unevasive straight line. On the other hand, drift will not be maximal if the particle's motion is some sort of an evasive random walk. The purpose of this note is to report on an exploration of quantitative tradeoffs between these objectives.

## 2. PROBLEM FORMULATION

Let the positive $x$-axis represent the desired direction of drift, and suppose that the target goes from the origin to $\left(X_{t}, Y_{t}\right)$ in time $t$. Let $x(t)=E\left(X_{t}\right)$ and $y(t)=E\left(Y_{t}\right)$, let $S_{t}$ be the distance from $(x(t), y(t))$ to $\left(X_{t}, Y_{t}\right)$, and let $R_{t}$ be the distance from the origin to $\left(X_{t}, Y_{t}\right)$. Let $\sigma_{t}^{2}=E\left(S_{t}^{2}\right)$ be the measure of variance and $x^{2}(t)$ be the measure of drift. Then

$$
\begin{align*}
\sigma_{t}^{2}+ & x^{2}(t) \leq \sigma_{t}^{2}+x^{2}(t)+y^{2}(t)  \tag{I}\\
& =E\left(X_{t}^{2}+Y_{t}^{2}\right)=E\left(R_{t}^{2}\right) \leq(v t)^{2}
\end{align*}
$$

From (I), $(v t)^{2}$ is an upper bound on $\sigma_{t}^{2}+x^{2}(t)$, and this upper bound will be nearly achieved if
a) $y(t)=0$
b) the target's track is nearly a straight line, since in that case $E\left(R_{t}^{2}\right) \approx(v t)^{2}$.

For example, if the particle were to flip a coin to decide whether its course should be $\theta$ or $-\theta$, then $\sigma_{t}^{2}+x^{2}(t)=(v t)^{2}$, with $x^{2}(t)$ being largest when $\theta$ is 0 and $\sigma_{t}^{2}$ being largest when $\theta$ is $\pi / 2$. The course should never be changed at any time; if there is any possibility of a course change in $[0, t]$, then $\sigma_{t}^{2}+x^{2}(t)<(v t)^{2}$.

The above analysis leaves one with a feeling of dissatisfaction with the measure of variance $\sigma_{t}^{2}$, since maximization of $\sigma_{t}^{2}$ with a constraint on $x^{2}(t)$ leads to the adoption of an intuitively unevasive motion. A tracker who saw the particle begin its motion would have no difficulty extrapolating the track if he ever lost contact; once the initial direction $\theta$ is known, the particle's motion is deterministic. If the time origin were taken to be any time greater than 0 , and if the prediction of future position were the conditional expectation given all past movements, then the particle's motion would not be evasive at all. The above considerations lead to the adoption of $s_{t}^{2}$ as the measure of variance, where $s_{t}^{2}$ is variance from the conditional expectation of position given all past movements, averaged over all past movements. In order to simplify computation of $s_{t}^{2}$,
assume that the particle's course is a stationary Markov stochastic process, in which case the predictive power of all past motion is the same as the predictive power of current course. There are many such processes, from which we select a discontinuous one and a continuous one for further study. The natural discontinuous process is a "random tour" [3], where the particle changes direction only at the jump points of a Poisson process. The natural continuous process is the Ornstein-Uhlenbeck process, which is the only stationary Markov process that is normal. Figure 1 shows the ratio $s_{t}^{2} /\left((v t)^{2}-x^{2}(t)\right)$ as a function of $(x(t) / v t)^{2}$, where $s_{t}^{2}$ is in both cases maximal for the given value of $x(t)$. The rest of this paper consists of the computations lying behind Figure 1. Note that in both cases

$$
\begin{equation*}
s_{t}^{2} \leq .381\left[(v t)^{2}-x^{2}(t)\right] \quad(0-U, \text { random tour }) \tag{2}
\end{equation*}
$$

An additional result is relevant. In [2], Grenander formulates an analytic expression for $s_{t}^{2}$ when the particle's course is any stationary process. The expression is in general very cumbersome, but in the special case where the process is
 process (it is not Markov) that maximizes $s_{t}^{2}$. The maximum $s_{t}^{2}$ is

$$
\begin{equation*}
s_{t}^{2}=\frac{4}{\pi^{2}}\left((v t)^{2}-x^{2}(t)\right)=.405\left((v t)^{2}-x^{2}(t)\right) \tag{3}
\end{equation*}
$$

Evidently, the natural way to discuss the tradeoff between drift and variance is in terms of the ratio $R_{t}=s_{t}^{2} /\left((v t)^{2}-x^{2}(t)\right)$. The maximum possible value of $R_{t}$ amongst all stationary processes is unknown, but it appears to be considerably smaller than 1.0 , which is the bound obtained from equation (1) by observing that $s_{t} \leq \sigma_{t}$.

## 3. RANDOM TOUR CALCULATIONS

Assume without loss of generality that the particle's speed is $v=1.0$. The particle is assumed to pick an independent, identically distributed sequence of courses $\theta_{1}, \theta_{2}, \ldots$ from some distribution for which $E(\sin \theta)=0$. Each course holds for a time that is exponential with mean $l / \lambda$, after which a new course is adopted, etc. Let $E(\cos \theta)=c_{1}, E\left(\cos ^{2} \theta\right)=c_{2}$, $x_{\theta}(t)=E\left(X_{t} \mid \theta_{1}=\theta\right), Y_{\theta}(t)=E\left(Y_{t} \mid \theta_{1}=\theta\right), V_{X}(t)=E\left(X_{t}^{2}\right)$, $v_{Y}(t)=E\left(Y_{t}^{2}\right)$ and retain the definitions of $x(t)$ and $Y(t)$ made earlier. Since
(4) $\quad s_{t}^{2}=E\left(\left[X_{t}-x_{\theta}(t)\right]^{2}+\left[Y_{t}-y_{\theta}(t)\right]^{2}\right)$

$$
=v_{X}(t)+v_{Y}(t)-E\left(x_{\theta}^{2}(t)+y_{\theta}^{2}(t)\right)
$$

the functions that need to be determined are $x_{\theta}(t), y_{\theta}(t)$, $v_{X}(t)$, and $V_{Y}(t)$ 。

We know

$$
\begin{equation*}
E\left(x_{\theta}(t)\right)=x(t)=t c_{1} \tag{5}
\end{equation*}
$$

Let $U$ be the time of the first course change, and let $f(u)$ $=\lambda \exp (-\lambda u)$ be the density function of $U$. Then
(6) $E\left(X_{t} \mid \theta_{1}=\theta, U=u\right)= \begin{cases}u \cos \theta+x(t-u) & \text { if } u \leq t \\ t \cos \theta & \text { if } u \geq t\end{cases}$

Therefore, by conditional probability,

$$
\begin{equation*}
x_{\theta}(t)=\int_{0}^{t}[u \cos \theta+x(t-u)] f(u) d u+t \cos \theta \int_{t}^{\infty} f(u) d u \tag{7}
\end{equation*}
$$

After performing the integrations,

$$
\begin{equation*}
x_{\theta}(t)=\cos \theta(1-(1+\lambda t) \exp (-\lambda t)) / \lambda+x^{*} f(t)+t \cos \theta \exp (-\lambda t) \tag{8}
\end{equation*}
$$

where $x^{*} f(t)$ is the convolution of $x(t)$ and $f(t)$. Let $X(s), X_{\theta}(s)$, and $F(s)$ be the Laplace transforms of $x(t), X_{\theta}(t)$, and $f(t)$, respectively. Then $X(s)=c_{I} / s^{2}$ and $F(s)=\lambda /(\lambda+s)$. After cancelling $t \cos \theta \exp (-\lambda t)$ in (8) and taking Laplace transforms of both sides,

$$
\begin{equation*}
\lambda X_{\theta}(s)=\cos \theta(1 / s-1 /(\lambda+s))+c_{1} \lambda^{2} /\left(s^{2}(s+\lambda)\right) \tag{9}
\end{equation*}
$$

## Inverting the Laplace transform $X_{\theta}(s)$, and letting

 $z=\lambda t$,(10) $\lambda x_{\theta}(t)=\cos \theta(1-\exp (-z))+c_{1}(z-1+\exp (-z))$, or
(11) $\lambda \mathrm{x}_{\theta}(\mathrm{t})=\left(\cos \theta-c_{1}\right)(1-\exp (-z))+c_{1} z$.

Squaring both sides of (ll) and taking expected values,

$$
\begin{equation*}
\lambda^{2} E\left(x_{\theta}^{2}(t)\right)=\left(c_{2}-c_{1}^{2}\right)(1-\exp (-z))^{2}+c_{1}^{2} z^{2} \tag{12}
\end{equation*}
$$

There are no cross product terms in (12) because $\mathrm{I}\left(\cos \theta-c_{1}\right)=0$. $c_{2}-c_{1}^{2}$ is just the variance of $\cos \theta$. A similar analysis shows

$$
\begin{equation*}
\lambda^{2} E\left(y_{\theta}^{2}(t)\right)=\left(s_{2}-s_{1}^{2}\right)(1-\exp (-z))^{2}+s_{1}^{2} z^{2} \tag{13}
\end{equation*}
$$

where $s_{1}=E(\sin \theta)=0$ and $s_{2}=E\left(\sin ^{2} \theta\right)$. Adding (12) and (13) and noting that $c_{2}+s_{2}=1$,
(14) $\quad \lambda^{2} E\left(x_{\theta}^{2}(t)+y_{\theta}^{2}(t)\right)=\left(1-c_{1}^{2}\right)(1-\exp (-z))^{2}+c_{1}^{2} z^{2}$

We use a similar technique to obtain formulas for $V_{X}(t)$ and $V_{Y}(t)$.
(15) $E\left(X_{t}^{2} \mid U=u\right)= \begin{cases}u^{2} c_{2}+2 u c_{1} x(t-u)+v_{X}(t-u) & \text { if } u \leq t \\ t^{2} c_{2} & \text { if } u \geq t\end{cases}$

$$
\begin{align*}
v_{X}(t)= & \int_{0}^{t}\left[u^{2} c_{2}+2 u c_{1} x(t-u)+v_{X}(t-u)\right] f(u) d u  \tag{16}\\
& +t^{2} c_{2} \int_{t}^{\infty} f(u) d u
\end{align*}
$$

After doing the integration, cancelling the $t^{2} c_{2} \exp (-\lambda t)$ term, taking Laplace transforms, and simplifying,

$$
\begin{equation*}
V_{X}(s)=2 c_{2} /\left(s^{2}(\lambda+s)\right)+2 c_{1}^{2} \lambda /\left(s^{3}(\lambda+s)\right) \tag{17}
\end{equation*}
$$

where $V_{X}(s)$ is the Laplace transform of $V_{X}(t)$. Inverting, with $z=\lambda t$,

$$
\begin{equation*}
\lambda^{2} V_{X}(t)=2\left(c_{2}-c_{1}^{2}\right)(z-1+\exp (-z))+z^{2} c_{1}^{2} \tag{18}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\lambda^{2} v_{Y}(t)=2\left(s_{2}-s_{1}^{2}\right)(z-1+\exp (-z))+z^{2} s_{1}^{2} \tag{19}
\end{equation*}
$$

Substituting (14), (18), and (19) into (4),

$$
\begin{equation*}
\lambda^{2} s_{t}^{2}=\left(1-c_{1}^{2}\right)\left(2 z-2(1-\exp (-z))-(1-\exp (-z))^{2}\right) \tag{20}
\end{equation*}
$$

or

$$
\begin{equation*}
s_{t}^{2}=t^{2}\left(1-c_{1}^{2}\right) g(z) \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
g(z)=\left(2 z-2(1-\exp (-z))-(1-\exp (-z))^{2}\right) / z^{2} \tag{22}
\end{equation*}
$$

The function $g(z)$ has a maximum at $z=1.9$, and $g(1.9)=.381$. Since $t^{2}\left(1-c_{1}^{2}\right)=t^{2}-x^{2}(t),(21)$ is thus consistent with (2). Note that $\lambda$ should be set to make the number of turns in time $t$ be 1.9, on the average.

## 4. ORNSTEIN-UHLENBECK CALCULATIONS

The $0-U$ process $\theta_{t}$ is governed by two numbers $\alpha$ and $\beta$. The equilibrium distribution is normal with mean 0 and variance $\beta$; i.e., $\theta_{t} \sim N(0, \beta)$. From Feller [l],

$$
\begin{equation*}
\theta_{u} \sim N\left(p \theta_{v}, \beta\left(1-p^{2}\right)\right) \quad \text { for } u \geq v \tag{23}
\end{equation*}
$$

where $p=\exp (-\alpha(u-v))$. The parameter $\alpha$ is thus a smoothing constant, with small values of $\alpha$ corresponding to smooth processes. In the following, we will repeatedly use the fact that, if $\theta \sim N(\mu, \sigma)$, then $E(\cos \theta)=(\cos \mu) \exp \left(-\sigma^{2} / 2\right)$ and $E(\sin \theta)=(\sin \mu) \exp \left(-\sigma^{2} / 2\right)$ 。

The notation and plan are as in the random tour analysis; i.e. we plan to employ (4) in obtaining an equation for $s_{t}^{2}$. We first note that

$$
\begin{equation*}
x_{\theta}(t)=E\left(\int_{0}^{t} \cos \theta_{u} d u\right)=\int_{0}^{t} E\left(\cos \theta_{u}\right) d u \tag{24}
\end{equation*}
$$

Employing (23) with $v=0$ and $\theta_{V}=\theta$,

$$
\begin{equation*}
x_{\theta}(t)=\int_{0}^{t} \cos \left(p_{u} \theta\right) \exp \left(-\beta\left(1-p_{u}^{2}\right) / 2\right) d u \tag{25}
\end{equation*}
$$

where $p_{u}=\exp (-\alpha u)$. Therefore, since

$$
\left[\int_{a}^{b}(h(x) d x)\right]^{2}=\int_{a}^{b} \int_{a}^{b} h(x) h(y) d x d y
$$

$$
\begin{gather*}
x_{\theta}^{2}(t)=\int_{0}^{t} \int_{0}^{t} \cos \left(p_{u} \theta\right) \cos \left(p_{v} \theta\right) \exp \left(-\beta\left(1-p_{u}^{2}\right) / 2\right)  \tag{26}\\
\\
x \exp \left(-\beta\left(1-p_{v}\right)^{2} / 2\right) \text { dudv }
\end{gather*}
$$

If cos is replaced by $\sin$ in (26), the result is an expression for $y_{\theta}^{2}(t)$. Using the fact that $\cos \left(p_{u} \theta\right) \cos \left(p_{v} \theta\right)+\sin \left(p_{u} \theta\right) \sin \left(p_{v}\right.$ $=\cos \left(\left(p_{u}-p_{v}\right) \theta\right)$, we therefore have

$$
\begin{equation*}
x_{\theta}^{2}(t)+y_{\theta}^{2}(t)=\int_{0}^{t} \int_{0}^{t} \cos \left(\left(p_{u}-p_{v}\right) \theta\right) \exp \left(-\beta\left(2-p_{u}^{2}-p_{v}^{2}\right) / 2\right) d u d v \tag{27}
\end{equation*}
$$

Since $\left(p_{u}-p_{v}\right) \theta \sim N\left(0, B\left(p_{u}-p_{v}\right)^{2}\right)$,
(28) $E\left(x_{\theta}^{2}(t)+y_{\theta}^{2}(t)\right)$

$$
=\int_{0}^{t} \int_{0}^{t} \exp \left(-\beta\left(p_{u}-p_{v}\right)^{2} / 2\right) \exp \left(-\beta\left(2-p_{u}^{2}-p_{v}^{2}\right) / 2\right) d u d v,
$$

or

$$
\begin{align*}
& E\left(x_{\theta}^{2}(t)+y_{\theta}^{2}(t)\right)  \tag{29}\\
& =\int_{0}^{t} \int_{0}^{t} \exp (-\beta[1-\exp (-\alpha(u+v))]) d u d v
\end{align*}
$$

We turn next to computation of $v_{X}(t)$ and $v_{Y}(t)$.
Since $X(t)=\int_{0}^{t} \cos \theta_{u} d u$,

$$
\begin{equation*}
x^{2}(t)=\int_{0}^{t} \int_{0}^{t} \cos \theta_{u} \cos \theta_{v} d u d v \tag{30}
\end{equation*}
$$

If $\cos$ is replaced by $\sin$ in (30), an expression for $Y^{2}(t)$ results. Since $\cos \theta_{u} \cos \theta_{v}+\sin \theta_{u} \sin \theta_{v}=\cos \left(\theta_{u}-\theta_{v}\right)$,

$$
\begin{equation*}
x^{2}(t)+Y^{2}(t)=\int_{0}^{t} \int_{0}^{t} \cos \left(\theta_{u}-\theta_{v}\right) d u d v \tag{31}
\end{equation*}
$$

From (23), $\theta_{u}-\theta_{v} \sim N\left(-\theta_{v}(1-p), \beta\left(1-p^{2}\right)\right)$ for $u \geq 0$. Since $\theta_{v} \sim N(0, B)$,
(32) $\theta_{u}-\theta_{v} \sim N\left(0, \beta(1-p)^{2}+B\left(1-p^{2}\right)\right)$ for $u \geq v$,
or
(33) $\left(\theta_{u}-\theta_{v}\right) \sim N(0,2 \beta[1-\exp (-\alpha|u-v|)])$

Returning to (31), we finally obtain
(34) $E\left(X^{2}(t)+Y^{2}(t)\right)=\int_{0}^{t} \int_{0}^{t} \exp (-\beta[1-\exp (-\alpha|u-v|)]) d u d v$

Substituting (34) and (29) into (4), one obtains a long but nonetheless explicit formula for $s_{t}^{2}$ as a function of $\alpha$ and $\beta$. since

$$
\begin{equation*}
x(t)=t E(\cos \theta)=t \exp (-\beta / 2) \tag{35}
\end{equation*}
$$

maximizing $s_{t}^{2}$ for fixed $x(t)$ is the same as maximizing $s_{t}^{2}$ for fixed $B$. The maximized $s_{t}^{2}$, after being divided by $t^{2}-x^{2}(t)$, is shown in Figure 1 . Figure 2 shows the optimal product at as a function of $(x(t) / t)^{2}$. Figure 3 shows $s_{t}^{2} / t^{2}$ as a function of $\alpha t$ for $\beta=1$, showing that it is better for the particle to make $\alpha$ t too large than too small.

## Further analysis is possible in case $\beta$ is very large or

 very small. After making a change of variable for $|u-v|$ in (34) and for $u+v$ in (29), the result is, with $z=\alpha t$$$
\begin{equation*}
s_{t}^{2} / t^{2}=F(\beta, z) \equiv \frac{4}{z^{2}} \int_{0}^{z} d x \int_{0}^{x} \Delta(y) d y \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta(y)=\exp [-\beta(1-\exp (-y))]-\exp [-\beta(1-\exp (-2 y))] \tag{37}
\end{equation*}
$$

When $\beta$ is very small,

$$
\begin{equation*}
\Delta(y) \approx \beta[\exp (-y)-\exp (-2 y)] \quad(\operatorname{small} \beta) \tag{38}
\end{equation*}
$$

After integrating (38) twice and multiplying by $\left(4 / z^{2}\right)$, one obtains

$$
\begin{equation*}
F(\beta, z) \approx \beta g(z) \tag{39}
\end{equation*}
$$

(small B)
where $g(z)$ is the same function as in the random tour analysis (eqn (22)). Furthermore, since $t^{2}-x^{2}(t)=t^{2}(1-\exp (-\beta)) \approx t^{2} \beta$ when $\beta$ is small,

$$
\begin{equation*}
s_{t}^{2} /\left(t^{2}-x^{2}(t)\right) \approx g(z) \quad(\operatorname{small} \beta) \tag{40}
\end{equation*}
$$

When $\beta$ is small, $z$ should therefore be set to 1.9 , in which case $g(z)=.381$.

Since $\lim _{\beta \rightarrow \infty} F(\beta, z)=0$ for $z>0$, the optimal $z$ must approach 0 as $\beta$ becomes large. Since $0 \leq y \leq x \leq z$ in (36), $y$ and $x$ are small if $z$ is. For small $y$,

$$
\begin{equation*}
\Delta(y) \approx \exp (-\beta y)-\exp (-2 \beta y) \quad(\operatorname{small} y) \tag{41}
\end{equation*}
$$

After integrating (41) twice and multiplying by (4/z ${ }^{2}$ ) one obtains

$$
\begin{equation*}
F(\beta, z) \approx g(\beta z) \tag{42}
\end{equation*}
$$

(small z)
where $g(\cdot)$ is once again the same function (22). Therefore

$$
\lim _{\beta \rightarrow \infty} F(\beta, 1.9 / \beta)=g(1.9)=.381 ;
$$

that is, the particle can make $s_{t}^{2} / t^{2}$ asymptotically . 381 when $\beta$ is large by making $z=1.9 / \beta$. Since $t^{2}$ and $t^{2}-x^{2}(t)$ are asymptotically equal when $\beta$ is large, $s_{t}^{2} /\left(t^{2}-x^{2}(t)\right)$ is also asymptotically.381. Thus, the ratio $s_{t}^{2} /\left(t^{2}-x^{2}(t)\right)$ is bounded by .381 in all cases examined.

## ACKNOWLEDMENT

This research was conducted while acting as consultant to ORI, Inc., and reported on separately.

## REFERENCES

REFERENCES

1. Feller, William, "An Introduction to Probability Theory and its Applications," Vol. II, Wiley (p. 336).
2. Grenander, Ulf, "A Tactical Study of Evasive Maneuvers," FOA reports, Vol. 2, No. 4, Research Institute of National Referenc Stockholm 80, Sweden (1968).
3. Washburn, Alan, "Probability Density of a Moving Particle," Opns. Res. 17, 861-871 (1969).

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | T11： | ＋ |  |  |  |  |  |  |  |  |
|  |  |  | － |  |  |  | －1 |  |  | －11 |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ＋1 |  |  | － |  | － |  |  |  | （12t： |  |  |  |  |  |  |  | I－7 | 1 |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |
|  | I |  | 1 |  | － |  | ＋1 |  | \＃ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | \＃ |  | $\square$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 7 |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ב |  |
|  |  |  |  |  | $\pm$ |  | H |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| T－1 | T1 |  |  |  | － |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | －rit |  |  |  |  |  |  |  |  |
|  |  |  | 1. | 1 | ， | $\pm$ | TH |  | H： | $\underline{\square}$ | \％ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\cdots$ |  | EI： |
|  | T | $\square$ |  | 3 | T | IT | TU |  |  |  |  |  |  |  | Tr |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | － |
| － | $\square$ |  | 14 | ＋ | － | $\underline{4}$ | TH1 | T | ＋ | － |  |  |  |  |  |  |  |  |  | IL |  |  |  |  |  |  |  |  |  |  | $\square$ |  |  |
| T－ |  |  | IT | － | th | 17 | ． 41 | ＋ | $\square$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\square$ | － |  | 4 | T | ＋ | ＋： |  | 4．4 | ＋1． | H12． |  |  | I |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\square$ |  | F |
|  |  |  | ，it | E | － | －TH | ．1． | － | － | － |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  | － | ＋ |  |  |  |
| $\square$ | $\underline{+}$ | $\pm$ | ＋ | ＋ | ＋ | ＋1－1 | ＋ | U | － | $\because$ |  | 1 |  |  | － |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | － |
| － | $\square$ | $\square$ | ＋1／ | \％ | $\square$ | TIT | － | $\square$ | ［in |  | － |  |  |  |  |  |  |  |  |  | $=$ |  |  |  |  |  |  |  |  |  |  |  |  |
| \％ | $\square$ |  | ＋－ | ＝ |  | $\pm$ |  | ＋ | U | ． |  | － |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\square$ | H．－ |  | － | E | －1 | － |  | ＋ | $\square$ |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\cdots$ | I－7． | $\underline{+}$ | $1{ }^{1}$ | $\square$ | － | Til | $\underline{1}$ | $\square$ | ＋ | － |  |  | ＋ |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  | － |  | H |  |
| － | T | ． | ［ | T | ＋ | 1 | － 1 | － | T1／ | － | 4 | 4 |  | t |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| － | T | $\pm$ | Til | $\pm$ | ＋ | $\pm$ | － | IT－ | － |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\square$ | TII | $\pm$ | － |  | ＋1． | I | ＋ | I | \％ | U |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ＋17 | $\cdots$ | $\pm$ | ＋ | $\square$ | $\pm$ | $\cdots$ | $\cdots$ | － | － | $\pm$ | ＋ |  | ． |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ＋ |
| F－7 | I |  | －1 | 1 | T1． | $\pm$ | － | T－ |  |  |  | ］ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\square$ |  |  | ＋． | $\square$ | $\square$ |  | － |  | － |  |  | 1. |  | 1 |  |  |  |  |  |  |  |  |  | － | $\square$ |  |  |  |  |  | $\square$ | － | $\cdots$ |
| ＋ |  | － | ＋ | $\square$ | $=$ | － | $\pm$ |  | － |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | \％ | \％ | ＋ | － |  | ＋ | $\bigcirc$ | ＋ |  |  | ＋1． | 1 |  | － |  |  | － | － |  |  | $\because$ | 1 |  |  | － |  |  |  |  |  |  |  | － |
| －1：－ | $\pm$ | ＋ | － | T | $\pm$ | titis | － | － | － 1 | ＋． | － | ＋ |  | $\pm$ |  |  |  |  |  |  | ． |  |  |  |  |  |  | ＋ | － |  |  | I． | $\square$ |
| － | $\pm$ | $\square$ | － 1 | － | $\cdots$ | ＋iTi | T | $\pm$ | $\square$ | － | $\square$ | t |  | E |  |  |  |  |  |  |  |  |  |  | $\square$ |  |  | $\pm$ | － |  |  |  |  |
| H1］ | 7 | $\square$ | $\underline{.}$ |  |  | ＋ | $\square$ |  | $\square$ |  |  | ＋ |  | $\cdots$ |  |  |  |  |  |  |  |  |  |  | $\square$ |  |  |  |  |  |  |  | $\pm$ |
| － | ＋ | $\square$ | － |  |  |  | $1+1$ | － | $\square$ |  | ＋ | － |  | $\cdots$ |  |  | $=$ |  |  |  | $\underline{T}$ | 1 |  |  | $\underline{3}$ |  |  | 1 | $\square$ | IT | － |  | 1 |
| T | T．］ | ＋ |  | T | － 7 | F | － | － | － | － |  | T |  | － |  | $\underline{\square}$ | 三 | EL |  | － | $\cdots$ | ＋ |  |  |  |  |  |  |  |  |  |  | $\pm$ |
| ＋17 |  |  | $\underline{\square}$ | $=$ |  | t． | － |  | － |  | $\square$ | 1. |  | I． |  | ＋ | ＝ | $=$ | $\square$ | T－ | － | － |  |  |  | － |  |  |  |  | $\underline{-}$ | ： | $\square$ |
| － | ： | － | 4 | ＋ |  | $\underline{12}$ |  | ITI |  |  |  |  |  |  |  |  |  |  |  |  | － |  |  | － | 二a |  |  |  |  |  |  |  |  |
| $\square$ |  |  |  | $\square$ | 4 | ＋ |  | $\cdots$ |  | － |  |  |  |  |  | $\square$ | $\square$ | ＋ | $=$ | $\square$ | － | － |  |  | － | 1 | T | ＋ | － | \％ | － | － | ＝ |
| 171 |  |  | 1 | ．- |  | ＋ | C |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\pm 7$ |  |  |  | ＋ | $\underline{\square}$ |  |  |  |  | T |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 13 |  | ＋．7． |  |  |  |  |  |  |  |
| $\square 7$ |  |  | ［1］ | － | ： |  |  | Bou | unt | d |  | rom |  | 15 |  |  | $t$ | $\pm$ | ＝ | E | $\because$ |  | － | I | $\underline{.}$ | ＋ | － | H |  |  | $\square$ |  | 4 |
| 151： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| － | \％ | T |  |  |  |  | － |  | ＝ | $\underline{1}$ | ， | 1 | $\pm$ |  | $\ldots$ |  | $\square$ | T |  | I． | － | － | I | $\pm$ |  | t |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| － |  |  | ＝ |  | － | $\square$ | $\pm$ |  |  | － |  | － |  |  | － |  | $\because$ |  | ＝ |  |  |  | $\cdots$ |  |  |  |  |  |  | ＝ |  |  |  |
|  | T． |  |  | $\square$ |  |  |  |  |  | － |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| T－ |  |  |  |  |  |  |  |  | － | $\pm$ |  |  |  |  |  | 二 |  |  |  | － |  |  |  |  |  |  | －-1 |  |  |  |  |  |  |
| $\square$ | H | F |  |  | ＝ | － |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| － |  |  |  | $\square$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | － |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 2 |  |  |  |  |  |  |  |  |  | $\square$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\underline{ }$ |
| － | S |  |  |  |  |  |  |  |  |  |  |  |  |  | … |  |  |  |  |  |  |  |  |  |  |  | $\cdots$ | ＋ |  |  |  |  | I |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\square$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | － | $\times$ | （4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | － | $\ldots$ |  | $\ldots$ |  |  |  |  |  | － |  | ro | ur |  |  |  |  |  | 1 | － | － | $\pm$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\pm$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 81 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | I |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\underline{+1}$ |  |  |  |  |  |  |  |  |  |  |  |
| － |  |  |  |  |  |  |  |  |  | E |  |  |  |  |  |  |  |  |  |  |  |  |  |  | － | 1 | ＝ |  |  |  |  |  |  |
| ＋ |  |  |  |  |  |  |  | 3 |  | I |  |  |  |  |  | $4$ |  |  |  |  |  |  |  | It | － | 1 | $=$ |  | 4 |  |  |  |  |
| $\square$ |  |  |  |  |  | ＋ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | － |  |  |  |  | r | ＝ |  |  |  |  |  |  |
|  |  | $\pm$ |  |  |  |  |  |  |  | I |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\square$ | － |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | F |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\square$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\square$ | $1$ | $\pm$ |  | ， |  | I | $\square$ |  |  |  |  |  |  |  | $\pm$ |  |  |  |  | ＋ |  |  |  | I＝ | $=1$ |  |  |  |  | －－－ |  |  |  |
| $\square$ |  |  |  |  |  |  |  |  |  | ＋ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ＝ | $\cdots$ | 三－ |  | － | t |  |  |  |
| － |  | ＋ | IT |  |  |  | ＋ |  |  |  | $\square$ | － |  |  |  | $I=$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $1=$ | T + |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| － 1 |  | ＋1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| －$\quad 1$ |  |  | $\square$ |  |  | － | － |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | \％ |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 0 |  |  |  |  |  | $\pm$ |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |
|  | － | ＋ | F． | $+$ |  |  |  | 1 | H1 |  | －－ | － |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 1 |  |  | I | $\square$ |  |  |  | （ | 4 |  |  | 2 |  |  |  |  |  |  |  |  |  |  |  | － |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 1－1 |  |  |  |  | \＃） 1 |  | Vt |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\pm$ |  | E二 |  | － |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | I！ |  | ＋ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | $\pm$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ＋ |  | \＃ | 1 | $\cdots$ | 1. | － | － |  | ＋ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | － | ＋ | － |  |  | $\pm$ |  | $\pm$ |  |
| $\pm$ |  |  |  | $\square$ | E | I |  | I： | 41 | It |  |  |  | Wre |  | 1 |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |
| I | － |  |  | $\square$ | ＋ |  |  |  |  |  | $\square$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $1+$ |  |  |  |  |  |  |  |
|  |  | 5 |  |  | － | z |  | \＃ |  |  | $=$ | 3 |  |  |  |  |  | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| － |  | İ－ |  | Iz |  | 1 | － | I | $\cdots$ | 1 | － | $\pm$ |  |  |  |  |  |  |  |  |  |  |  | － |  |  |  |  |  |  |  | － |  |
| － | － |  | T |  |  | F | $\square$ | － |  | I－ |  |  |  |  |  |  |  |  |  |  |  |  |  | ： |  |  |  |  |  |  |  |  |  |
|  | 4 |  |  |  | － | － |  | $\square$ |  | 1.2 |  | $\underline{1}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\cdots$ |  |  |  |  |  |  |
| $\square$ |  |  |  |  |  |  |  |  |  | ＋ |  | $\pm$ |  |  |  |  |  | ＋ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| － |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



Dean of Research ..... 1
Code 012
Naval Postgraduate School
Monterey, California 93940
Defense Documentation Center2Cameron Station
Alexandria, Virginia ..... 22314
Library, Code 0142 ..... 2Naval Postgraduate School
Monterey, California 93940
Commanding Officer ..... 1
Air Test and Evaluation Squadron 1 (VX-1)
Patuxent River, Maryland 20670
Attn: Code 713
Commanding Officer1Submarine Development Group TwoGroton, Connecticut 06340
Director ..... 1Strategic Systems Project Office1931 Jefferson Davis HighwayArlington, Virginia 20376
Attn: Code SP2021
Naval Air Development Center ..... 1
Code 2022
Johnsville, Pennsylvania 18974
Center for Naval Analysis ..... 11401 Wilson Boulevard
Arlington, Virginia 22209
Naval Weapons Laboratory ..... 1
Dahlgren, Virginja 22448
Naval Weapons Center ..... 1
China Lake, California 93555
Naval Surface Weapons Center ..... 1
White Oak
Silver Spring, Maryland 20910
Naval Research Laboratory ..... 1Washington, D.C. 20390

David Taylor Naval Ship Research \& Development Center

Naval Ocean Systems Center
1
San Diego, California 92132
Naval Intelligence Support Center
1
4301 Suitland Road
Washington, D.C. 20390
Naval Electronics Systems Command
1
2511 Jefferson Davis Highway
Arlington, Virginia 20360
Naval Underwater Systems Center
1
Code SA33
New London, Connecticut 06320
Naval Ship Engineering Center
1
Hyattsville, Maryland 20782
Naval Coastal Systems Laboratory
1
Panama City, Florida 32401
Naval Air Systems Command
Code 370
Washington, D.C. 20361
Naval Sea Systems Command
1
Code 03424
Washington, D.C. 20362
Naval Underwater Systems Center
1
Newport, Rhode Island 02840
Naval Ordnance Station
1
Indian Head, Maryland 20640

Naval Surface Weapons Center
1
Dahlgren, Virginia 22448

$$
\begin{aligned}
& \text { Anti-Submarine Warfare Systems Project Office } \\
& \text { Code ASW-l37 } \\
& \text { Department of the Navy } \\
& \text { Washington, D.C. } 20360
\end{aligned}
$$

Office of Naval Research 1
Code ONR-230
800 North Quincy Street
Arlington, Virginia 22217
Office of Naval Research ..... 1
Code ONR-434
800 North Quincy Street Arlington, VA 22217
Daniel H. Wagner, Associates ..... 1
Station Square One
Paoli, PA 19301
Tetra Tech, Inc. ..... 11911 Fort Meyer Dr.
Suite 601
Arlington, VA 22209
Systems Planning and Analysis ..... 1
1600 Wilson Blvd.
Suite 700
Arlington, VA 22209
ORI, Inc. ..... 1
1400 Spring St.
Silver Spring, MD ..... 20910
Naval Postgraduate School
Monterey, Ca. 93940
Attn: R. N. Forrest, Code 55Fo ..... 1
A. R. Washburn, Code 55Ws ..... 10
R. J. Stampfel, Code 55 ..... 1
Library, Code 55 ..... 1

## U190210

Office of Naval Research
Code ONR-434
800 North Quincy Street
Arlington, VA 22217

Daniel H. Wagner, Associates
Station Square One
Paoli, PA 19301
Tetra Tech, Inc.
1911 Fort Meyer Dr.
Suite 601
Arlington, VA 22209
Systems Planning and Analysis 1
1600 Wilson Blvd.
Suite 700
Arlington, VA 22209
ORI, Inc. I
1400 Spring St.
Silver Spring, MD 20910
Naval Postgraduate School
Monterey, Ca. 93940
Attn: R. N. Forrest, Code 55Fo
A. R. Washburn, Code 55Ws
R. J. Stampfel, Code 55

Library, Code 55

## U190210

